Yamuk
|
Alt ve üst kenarları paralel olan dörtgenlere yamuk denir.
Şekildeki ABCD yamuğunda [AB] // [DC] dir.
|
 |
1. Yamukta açılar
| [AB] // [DC] olduğundan
|
x + y = 180°
a + b = 180°
|
|
 |
- Karşılıklı iki kenarı paralel olan dörtgenlerde açıortay verilmiş ise ikizkenar üçgen elde edebileceğimiz gibi, ikizkenarlık verilmiş ise de açıortay elde ederiz.
|
 |
2. Yamuğun Alanı
| ABCD yamuğunda paralelkenarlar arasındaki uzaklığa yamuğun yüksekliği denir.
Alt tabanı |DC| = a,
üst tabanı |AB| = c
yüksekliği |AH| = h
ABCD yamuğunun alanı
|
 |
3. İkizkenar Yamuk
| Paralel olmayan kenarları eşit olan yamuklara ikizkenar yamuk denir. |
 |
| a. İkizkenar yamukta taban ve tepe açıları kendi
aralarında eşittir.
m(A) = m(B) = y
m(D) = m(C) = x
|
 |
| b. İkizkenar yamukta köşegen uzunlukları eşittir.
Köşegenlerin kesiştiği noktaya E dersek
|AE| = |EB|
|DE| = |CE|
|
 |
- Köşegen uzunlukları birbirine eşit olan her yamuk ikizkenardır.
| c. İkizkenar yamukta üst köşelerden alt tabana dikler çizilmesiyle ADK ve BCL eş dik üçgenleri oluşur.
|DC| = a
|KL| = c

|
 |
4. Dik Yamuk
| Kenarlarından biri alt ve üst tabana dik olan yamuğa dik
yamuk denir.
|AD| = h aynı zamanda yamuğun yüksekliğidir.
|
 |
5. Yamukta Orta Taban
| a. ABCD yamuğunda E ve F kenarların orta noktaları ise
EL doğrusuna orta taban denir.
[AB] // [EF] // [DC]
|
 |
| A(ABCD)=Orta taban x Yükseklik |
| b. Yamukta köşegenin orta tabanda ayırdığı parçalar

|
 |
- ABCD yamuğunda EF orta taban

|
 |
| 6. Yamuğun köşegenlerinin kesim noktasından tabanlara
çizilen paralel;
ABCD yamuğunda L köşegenlerin kesim noktasıdır.
[AB] // [MN] // [DC]

|
 |
7. Kenar Uzunlukları Bilenen Yamuk
| Bir ABCD yamuğunun kenar uzunlukları biliniyor ise kenarlardan birine paralel çizilerek bir paralelkenar ve bir üçgen oluşturulur. |
 |
8. Köşegenleri Dik Kesişen Dik Yamuk
|
ABCD dik yamuğunda
[AC] ^ [BD] BD ye paralel çizildiğinde oluşan dik üçgende
|
 |
9. Köşegenleri Dik Kesişen İkizkenar Yamuk
|
ABCD yamuğunda
|AD| = |BC|
[AC] ^ [BD]
yamuğun yüksekliği

|
 |
| 10. Yamukta Köşegenlerin Ayırdığı Parçaların Alanı
Herhangi bir yamukta köşegenler çizildiğinde
[AB] // [DC]


|
 |
| Bir yamukta alt ve üst iki köşenin, karşı kenarın orta
noktası ile birleştirilmesi sonucu oluşan alan yamuğun
alanının yarısına eşittir.
|BE| = |EC|
|
 |
| l [AB] // [EF] // [DC],
|AB| = a
|EF| = b
|DC| = c
A(ABFE) = S2
A(EFCD) = S1
|
|